We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Respiratory sinus arrhythmia on the ESA-short-arm human centrifuge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Migeotte, P.-F. ; R. Mil. Acad., Brussels, Belgium ; Pattyn, N. ; Vanspauwen, R. ; Neyt, X.
more authors

In this article, we investigated the hypothesis that the effects of hypergravity on respiratory sinus arrhythmia (RSA) can mimic the effects observed after spaceflight cardiovascular deconditioning. Artificial gravity along the head-to-feet axis on a short-arm centrifuge induces gravity gradients. This physiological condition of significantly higher g at the feet than at the heart level is specific and likely induces blood sequestration in the lower limbs. After spaceflight, astronauts are in a condition of cardiovascular deconditioning, where blood pooling in the lower part of the body and autonomic adaptation are factors contributing to orthostatic intolerance and changes in heart-rate variability (HRV). ECG and respiration were recorded during imposed and controlled breathing (ICB) protocols, which were repeated at different levels of artificial gravity as well as during supine and standing control conditions, and the changes were analyzed.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:28 ,  Issue: 6 )