By Topic

Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? experimental evidence and a computational model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
David J. Reinkensmeyer ; Department of Mechanical and Aerospace Engineering, Univ of California, Irvine, 92697 ; Marc A. Maier ; Emmanuel Guigon ; Vicky Chan
more authors

Different dose-matched, upper extremity rehabilitation training techniques, including robotic and non-robotic techniques, can result in similar improvement in movement ability after stroke, suggesting they may elicit a common drive for recovery. Here we report experimental results that support the hypothesis of a common drive, and develop a computational model of a putative neural mechanism for the common drive. We compared weekly motor control recovery during robotic and unassisted movement training techniques after chronic stroke (n = 27), as assessed with quantitative measures of strength, speed, and coordination. The results showed that recovery in both groups followed an exponential time course with a time constant of about 4-5 weeks. Despite the greater range and speed of movement practiced by the robot group, motor recovery was very similar between the groups. The premise of the computational model is that improvements in motor control are caused by improvements in the ability to activate spared portions of the damaged corticospinal system, as learned by a biologically plausible search algorithm. Robot-assisted and unassisted training would in theory equally drive this search process.

Published in:

2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

3-6 Sept. 2009