By Topic

Using modulation spectra for voice pathology detection and classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Markaki, M. ; Dept. of Comput. Sci., Univ. of Crete, Heraklion, Greece ; Stylianou, Y.

In this paper, we consider the use of Modulation Spectra for voice pathology detection and classification. To reduce the high-dimensionality space generated by Modulation spectra we suggest the use of Higher Order Singular Value Decomposition (SVD) and we propose a feature selection algorithm based on the Mutual Information between subjective voice quality and computed features. Using SVM with a radial basis function (RBF) kernel as classifier, we conducted experiments on a database of sustained vowel recordings from healthy and pathological voices. For voice pathology detection, the suggested approach achieved a detection rate of 94.1% and an Area Under the Curve (AUC) score of 97.8%. For voice pathology classification, an average detection rate and AUC of 88.6% and 94.8%, respectively, was achieved in classifying polyp against keratosis leukoplakia, adductor spasmodic dysphonia and vocal nodules.

Published in:

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE

Date of Conference:

3-6 Sept. 2009