Cart (Loading....) | Create Account
Close category search window
 

Stability analysis and breast tumor classification from 2D ARMA models of ultrasound images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdulsadda, A. ; Dept. of Appl. Sci., Univ. of Arkansas at Little Rock, Little Rock, AR, USA ; Bouaynaya, N. ; Iqbal, K.

Two-dimensional (2D) autoregressive moving average (ARMA) random fields have been proven to be accurate models of ultrasound breast images. However, the stability properties of these models have not been examined. In this paper, we investigate the stability of 2D ARMA models in ultrasound breast images, and use the estimated 2D ARMA coefficients as a basis for statistical inference using artificial neural networks. Specifically, we use the estimated 2D ARMA coefficients as inputs to a multi layer perceptron (MLP) neural network to classify the ultrasound breast image into three regions: healthy tissue, benign tumor, and cancerous tumor. Our simulation results on various cancerous and benign ultrasound breast images illustrate the power of the proposed algorithm as attested by different learning algorithms and classification accuracy measures.

Published in:

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE

Date of Conference:

3-6 Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.