By Topic

A micropower support vector machine based seizure detection architecture for embedded medical devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shoeb, A. ; Massachusetts Inst. of Technol., Boston, MA, USA ; Carlson, D. ; Panken, E. ; Denison, T.

Implantable neurostimulators for the treatment of epilepsy that are capable of sensing seizures can enable novel therapeutic applications. However, detecting seizures is challenging due to significant intracranial EEG signal variability across patients. In this paper, we illustrate how a machine-learning based, patient-specific seizure detector provides better performance and lower power consumption than a patient non-specific detector using the same seizure library. The machine-learning based architecture was fully implemented in the micropower domain, demonstrating feasibility for an embedded detector in implantable systems.

Published in:

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE

Date of Conference:

3-6 Sept. 2009