By Topic

An independent brain-computer interface based on covert shifts of non-spatial visual attention

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dan Zhang ; Department of Biomedical Engineering at Tsinghua University, Beijing 100084, China ; Xiaorong Gao ; Shangkai Gao ; Andreas K. Engel
more authors

Modulation of steady-state visual evoked potential (SSVEP) by directing gaze to targets flickering at different frequencies has been utilized in many brain-computer interface (BCI) studies. However, this paradigm may not work with patients suffering from complete locked-in syndrome or other severe motor disabilities that do not allow conscious control of gaze direction. In this paper, we present a novel, independent BCI paradigm based on covert shift of non-spatial visual selective attention. Subjects viewed a display consisting of two spatially overlapping sets of randomly positioned dots. The two dot sets differed in color, motion and flickering frequency. Two types of motion, rotation and linear motion, were investigated. Both, the SSVEP amplitude and phase response were modulated by selectively attending to one of the two dot sets. Offline analysis revealed a predicted online classification accuracy of 69.3plusmn10.2% for the rotating dots, and 80.7plusmn10.4% for the linearly moving dots.

Published in:

2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

3-6 Sept. 2009