Cart (Loading....) | Create Account
Close category search window
 

Conduction analysis in mixed cardiomyocytes-fibroblasts cultures using microelectrode arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roy, S. ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Chen, M.Q. ; Kovacs, G.T.A. ; Giovangrandi, L.

Models for cardiac arrhythmia currently exist primarily in in-vivo and computer simulation form. Towards the development of such a model in-vitro, a better understanding of electrical conduction in heterogeneous cultures is required. Increasing ratios of cardiomyocytes and fibroblasts were cultured on 500 times 500 mum arrays of 36 microelectrodes to study the emergence and properties of action potential propagation in mixed cultures. A minimum ratio of 70% cardiomyocytes to 30% fibroblasts was found to be necessary for detection of electrical activity. However, the establishment of a continuous, homogeneous depolarization wave across the culture required a higher proportion of cardiomyocytes; even a 90:10 ratio was unable to consistently produce a unidirectional, uniform depolarization wave as is seen in controls. This model underlines the importance and sensitivity of tissue homogeneity in supporting electrical conduction, and is especially relevant to studies of arrhythmia (reentry) and stem cell grafts.

Published in:

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE

Date of Conference:

3-6 Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.