By Topic

Linear vection in virtual environments can be strengthened by discordant inertial input

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wright, W.Geoffrey ; Brandeis Univ., Waltham, MA, USA

Visual and gravitoinertial sensory inputs are integrated by the central nervous system to provide a compelling and veridical sense of spatial orientation and motion. Although it's known that visual input alone can drive this perception, questions remain as to how vestibular/ proprioceptive (i.e. inertial) inputs integrate with visual input to affect this process. This was investigated further by combining sinusoidal vertical linear oscillation (5 amplitudes between 0 m and plusmn0.8 m) with two different virtual visual inputs. Visual scenes were viewed in a large field-of-view head-mounted display (HMD), which depicted an enriched, hi-res, dynamic image of the actual test chamber from the perspective of a subject seated in the linear motion device. The scene either depicted horizontal (plusmn0.7m) or vertical (plusmn0.8m) linear 0.2Hz sinusoidal translation. Horizontal visual motion with vertical inertial motion represents a 90deg spatial shift. Vertical visual motion with vertical inertial motion whereby the highest physical point matches the lowest visual point and vice versa represents a 180deg temporal shift, i.e. opposite of what one experiences in reality. Inertial-only stimulation without visual input was identified as vertical linear oscillation with accurate reports of acceleration peaks and troughs, but a slight tendency to underestimate amplitude. Visual-only (stationary) stimulation was less compelling than combined visual+inertial conditions. In visual+inertial conditions, visual input dominated the direction of perceived self-motion, however, increasing the inertial amplitude increased how compelling this non-veridical perception was. That is, perceived vertical self-motion was most compelling when inertial stimulation was maximal, despite perceiving ldquouprdquo when physically ldquodownrdquo and vice versa. Similarly, perceived horizontal self-motion was most compelling when vertical inertial motion was at maximum amplitude. ldquoCross-talkrdquo bet- - ween visual and vestibular channels was suggested by reports of small vertical components of perceived self-motion combined with a dominant horizontal component. In conclusion, direction of perceived self-motion was dominated by visual motion, however, compellingness of this illusion was strengthened by increasing discordant inertial input. Thus, spatial mapping of inertial systems may be completely labile, while amplitude coding of the input intensifies the percept.

Published in:

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE

Date of Conference:

3-6 Sept. 2009