By Topic

Automatic nuclei segmentation and spatial FISH analysis for cancer detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kaustav Nandy ; Optical Microscopy and Analysis Laboratory, Advanced Technology program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 ; Prabhakar R. Gudla ; Karen J. Meaburn ; Tom Misteli
more authors

Spatial analysis of gene localization using fluorescent in-situ hybridization (FISH) labeling is potentially a new method for early cancer detection. Current methodology relies heavily upon accurate segmentation of cell nuclei and FISH signals in tissue sections. While automatic FISH signal detection is a relatively simpler task, accurate nuclei segmentation is still a manual process which is fairly time consuming and subjective. Hence to use the methodology as a clinical application, it is necessary to automate all the steps involved in the process of spatial FISH signal analysis using fast, robust and accurate image processing techniques. In this work, we describe an intelligent framework for analyzing the FISH signals by coupling hybrid nuclei segmentation algorithm with pattern recognition algorithms to automatically identify well segmented nuclei. Automatic spatial statistical analysis of the FISH spots was carried out on the output from the image processing and pattern recognition unit. Results are encouraging and show that the method could evolve into a full fledged clinical application for cancer detection.

Published in:

2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

3-6 Sept. 2009