Cart (Loading....) | Create Account
Close category search window
 

Application of least square method for muscular strength estimation in hand motion recognition using surface EMG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nakano, T. ; Dept. of Electr. & Electron. Eng., TOKAI Univ., Tokai, Japan ; Nagata, K. ; Yamada, M. ; Magatani, K.

In this study, we describe the application of least square method for muscular strength estimation in hand motion recognition based on surface electromyogram (SEMG). Although the muscular strength can consider the various evaluation methods, a grasp force is applied as an index to evaluate the muscular strength. Today, SEMG, which is measured from skin surface, is widely used as a control signal for many devices. Because, SEMG is one of the most important biological signal in which the human motion intention is directly reflected. And various devices using SEMG are reported by lots of researchers. Those devices which use SEMG as a control signal, we call them SEMG system. In SEMG system, to achieve high accuracy recognition is an important requirement. Conventionally SEMG system mainly focused on how to achieve this objective. Although it is also important to estimate muscular strength of motions, most of them cannot detect power of muscle. The ability to estimate muscular strength is a very important factor to control the SEMG systems. Thus, our objective of this study is to develop the estimation method for muscular strength by application of least square method, and reflecting the result of measured power to the controlled object. Since it was known that SEMG is formed by physiological variations in the state of muscle fiber membranes, it is thought that it can be related with grasp force. We applied to the least-squares method to construct a relationship between SEMG and grasp force. In order to construct an effective evaluation model, four SEMG measurement locations in consideration of individual difference were decided by the Monte Carlo method.

Published in:

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE

Date of Conference:

3-6 Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.