By Topic

Monitoring and guidance of minimally-invasive thermal therapy using diagnostic ultrasound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ebbini, E.S. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota Twin Cities, Twin Cities, MN, USA ; Bischof, J.C.

We present specialized ultrasound imaging modes for monitoring and guidance of noninvasive and minimally-invasive thermal therapy. One mode is based on two-dimensional imaging of temperature change using diagnostic ultrasound. We have validated this method both in vivo and in vitro in monitoring the heating patterns produced by noninvasive HIFU source and minimally-invasive RF ablation device, respectively. In addition, a nonlinear method for imaging the quadratic echo components from HIFU-induced lesions has also been developed and tested in vivo. Illustrative results from both modes of imaging are presented. These results demonstrate the unique advantages of ultrasound as an image-guidance modality. Specifically, the high spatial and temporal resolutions that allow for imaging highly-localized short-duration therapeutic and sub-therapeutic HIFU beams. With the advent of high-performance computing hardware, these imaging modes are now implementable in real-time. This will lead to active realtime monitoring and control of a range of thermal therapies in the very near future.

Published in:

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE

Date of Conference:

3-6 Sept. 2009