By Topic

Robust Extended Kalman Filtering for Nonlinear Systems With Stochastic Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiong Kai ; Nat. Lab. of Space Intell. Control, Beijing Inst. of Control Eng., Beijing, China ; Chunling Wei ; Liangdong Liu

In this correspondence paper, a novel robust extended Kalman filter (REKF) for discrete-time nonlinear systems with stochastic uncertainties is proposed. The filter is derived to guarantee an optimized upper bound on the state estimation error covariance despite the model uncertainties as well as the linearization errors. Further analysis shows that the proposed filter has robustness against process noises, measurement noises, and model uncertainties. In addition, the new method is applied in an X-ray pulsar positioning system. It is illustrated through numerical simulations that the REKF is more effective than the standard extended Kalman filter and the extended robust H?? filter.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:40 ,  Issue: 2 )