By Topic

Design and Analysis of a Grid-Connected Photovoltaic Power System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bo Yang ; College of Electrical Engineering , Zhejiang University, Hangzhou, China ; Wuhua Li ; Yi Zhao ; Xiangning He

A grid-connected photovoltaic (PV) power system with high voltage gain is proposed, and the steady-state model analysis and the control strategy of the system are presented in this paper. For a typical PV array, the output voltage is relatively low, and a high voltage gain is obligatory to realize the grid-connected function. The proposed PV system employs a ZVT-interleaved boost converter with winding-coupled inductors and active-clamp circuits as the first power-processing stage, which can boost a low voltage of the PV array up to a high dc-bus voltage. Accordingly, an accurate steady-state model is obtained and verified by the simulation and experimental results, and a full-bridge inverter with bidirectional power flow is used as the second power-processing stage, which can stabilize the dc-bus voltage and shape the output current. Two compensation units are added to perform in the system control loops to achieve the low total harmonic distortion and fast dynamic response of the output current. Furthermore, a simple maximum-power-point-tracking method based on power balance is applied in the PV system to reduce the system complexity and cost with a high performance. At last, a 2-kW prototype has been built and tested to verify the theoretical analysis of the paper.

Published in:

IEEE Transactions on Power Electronics  (Volume:25 ,  Issue: 4 )