By Topic

Fault-Tolerant Design and Control Strategy for Cascaded H-Bridge Multilevel Converter-Based STATCOM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wenchao Song ; Future Renewable Electric Energy Delivery and Management Systems Center, Department of Electrical Engineering , North Carolina State University, Raleigh, NC, USA ; Alex Q. Huang

Cascaded H-bridge multilevel converter (CHMC) is a promising topology for flexible ac transmission systems such as static synchronous compensator (STATCOM) applications. Attention was drawn to the issue of converter reliability due to the large number of power devices used in CHMC applications. This paper proposed an effective fault-tolerant strategy by using H-bridge building block (HBBB) redundancy in CHMC-based STATCOM. The operating principle and the control strategy of the fault tolerance are proposed and discussed. The controller design consideration for the fault-tolerant STATCOM is presented. The proposed fault-tolerant control strategy is implemented on a seven-level CHMC-based STATCOM simulation platform and a five-level CHMC-based STATCOM hardware prototype. Simulation and experimental results are illustrated to verify the feasibility of the proposed fault-tolerant design with the HBBB redundancy.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 8 )