By Topic

Nonlinear Distributed Model for Bulk Acoustic Wave Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Collado, C. ; Dept. of Signal Theor. & Commun., Univ. Politec. de Catalunya, Barcelona, Spain ; Rocas, E. ; Mateu, J. ; Padilla, A.
more authors

This work expands the model proposed by Krimtholz, Leedom, and Matthaei (KLM) model to account for the nonlinear effects occurring in acoustic devices due to the nonlinear stiffened elasticity. We show that a nonlinear distributed capacitance in the acoustic transmission line of the KLM model can account for the distributed nature of the nonlinear effects. Specifically, we use the nonlinear telegrapher's equation to find closed-form equations for intermodulation distortion and harmonic generation. We confirm the validity of these equations by comparing their results with those provided by a KLM equivalent circuit in which the nonlinear transmission line is implemented by cascading many L-C cells having a voltage-dependent capacitance. To further confirm the model, we show measured nonlinear effects in a thin film bulk acoustic resonator in close agreement with the equivalent circuit simulations.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 12 )