By Topic

Design Methodology and Optimization of Distributed MEMS Matching Networks for Low-Microwave-Frequency Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Domingue, F. ; Electr. Eng. Dept., Ecole de Technol. Super., Montreal, QC, Canada ; Fouladi, S. ; Kouki, A.B. ; Mansour, R.R.

A design methodology for the distributed microelectromechanical system (MEMS) impedance matching networks based on the optimization of the uniformity of the Smith chart coverage has been developed. The proposed approach was validated through a comparison between a traditional coplanar waveguide (CPW) design and an improved design based on a slow-wave (SW) structure. The enhanced reconfigurable impedance matching network has been developed for low-frequency applications. The network is based on a distributed MEMS transmission line (DMTL) coupled with the SW structure to reduce the total physical length of the network by 25% in comparison with a traditional DMTL. An extensive analysis was performed to identify the impact of each design parameter in order to optimize the structure and reduce the required size for relatively low-frequency applications. Several parameters are extracted from the electromagnetic simulation results and are used to design the proposed impedance matching network. Measurement results confirm the efficiency of the proposed design methodology in improving the impedance coverage and also miniaturization of the DMTL impedance matching networks.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 12 )