Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Classification of primary radar tracks using gaussian mixture models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Espindle, L.P. ; Lincoln Lab., Massachusetts Inst. of Technol., Lexington, MA, USA ; Kochenderfer, M.J.

Classification of primary surveillance radar tracks as either aircraft or non-aircraft is critical to a number of emerging applications, including airspace situational awareness and collision avoidance. Substantial research has focused on target classification of pre-processed radar surveillance data. Unfortunately, many non-aircraft tracks still pass through the clutter-reduction processing built into the aviation surveillance radars used by the federal aviation administration. This paper demonstrates an approach to radar track classification that uses only post-processed position reports and does not require features that are typically only available during the pre-processing stage. Gaussian mixture models learned from recorded data are shown to perform well without the use of features that have been traditionally used for target classification, such as radar cross-section measurements.

Published in:

Radar, Sonar & Navigation, IET  (Volume:3 ,  Issue: 6 )