By Topic

Clustering of Software Systems Using New Hybrid Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mamaghani, A.S. ; Comput. Eng. Dept., Islamic Azad Univ., Bonab, Iran ; Meybodi, M.R.

Software clustering is a method for increasing software system understanding and maintenance. Software designers, first use MDG graph to model the structure of software system. In MDG, system modules (e.g. files ,classes) are represented as nodes and their relationships (e.g. function calls , inheritance relationships) as directed edges that connect the nodes. Once the MDG created, clustering algorithms are applied and create a partitioned MDG. Graph partitioning is a NP-Complete problem, So many algorithms for solving it has been reported in the literatures. In this paper two approximate algorithms have been proposed. The first algorithm is based on object migration learning automata and the second algorithm is a hybrid evolutionary algorithm obtained from combining object migration learning automata and genetic algorithm. The second algorithm by using learning automata and genetic algorithm accelerates the searching process and also prevents the algorithm from getting stuck in local optimal. Another positive point of the proposed algorithm is high stability. The proposed algorithms have been compared with some of the existing algorithms. Results show that the second algorithm has superiority over the existing methods.

Published in:

Computer and Information Technology, 2009. CIT '09. Ninth IEEE International Conference on  (Volume:1 )

Date of Conference:

11-14 Oct. 2009