By Topic

A New Structure for Permanent-Magnet-Biased Axial Hybrid Magnetic Bearings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fang Jiancheng ; Sch. of Instrum. Sci. & Opto-Electron. Eng., Beijing Univ. of Aeronaut. & Astronaut., Beijing, China ; Sun Jinji ; Xu Yanliang ; Wang Xi

We propose a new structure for a permanent-magnet-biased axial hybrid magnetic bearing. Starting with the inner air gap and the outer air gap of conventional axial magnetic bearings, we first construct a novel air gap between the permanent magnet and the outer housing, which we call the second air gap, separating the bias flux paths from the control flux paths. As a result, the control flux paths will have lower reluctance, and the power loss of the axial magnetic bearing will be lower. Next, we modeled this axial hybrid magnetic bearing and analyzed it using the equivalent magnetic circuit method, 2-D finite element method (FEM), and 3-D FEM. We have designed and assembled an axial hybrid magnetic bearing prototype for a reaction flywheel system with angular momentum of 15 Nmiddotmmiddots at a speed of 5000 r/min. The theoretical analysis and the prototype experiments show such advantages as simple structure, good force current and force displacement, and high operating reliability.

Published in:

IEEE Transactions on Magnetics  (Volume:45 ,  Issue: 12 )