By Topic

Wearable Assistant for Parkinson’s Disease Patients With the Freezing of Gait Symptom

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Marc Bachlin ; Wearable Computing Laboratory , Swiss Federal Institute of Technology Zürich, Zürich, Switzerland ; Meir Plotnik ; Daniel Roggen ; Inbal Maidan
more authors

In this paper, we present a wearable assistant for Parkinson's disease (PD) patients with the freezing of gait (FOG) symptom. This wearable system uses on-body acceleration sensors to measure the patients' movements. It automatically detects FOG by analyzing frequency components inherent in these movements. When FOG is detected, the assistant provides a rhythmic auditory signal that stimulates the patient to resume walking. Ten PD patients tested the system while performing several walking tasks in the laboratory. More than 8 h of data were recorded. Eight patients experienced FOG during the study, and 237 FOG events were identified by professional physiotherapists in a post hoc video analysis. Our wearable assistant was able to provide online assistive feedback for PD patients when they experienced FOG. The system detected FOG events online with a sensitivity of 73.1% and a specificity of 81.6%. The majority of patients indicated that the context-aware automatic cueing was beneficial to them. Finally, we characterize the system performance with respect to the walking style, the sensor placement, and the dominant algorithm parameters.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:14 ,  Issue: 2 )