By Topic

Antenna Modeling Based on a Multiple Spherical Wave Expansion Method: Application to an Antenna Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Serhir, M. ; Inst. of Electron. & Telecommun. of Rennes (I.E.T.R), I.N.S.A. de Rennes, Rennes, France ; Besnier, P. ; Drissi, M.

A method to derive an equivalent radiation source for planar antennas is presented. This method is based on spherical near-field (NF) data (measured or computed) to ascertain an equivalent set of infinitesimal dipoles placed over the main antenna aperture. These produce the same antenna radiation field, both inside and outside the minimum sphere enclosing the antenna. A spherical wave expansion (SWE) of the NF data is written in terms of infinitesimal dipoles using a transition matrix. This matrix expresses the linear relations between the transmission coefficients of the antenna and the transmission coefficients of each dipole. The antenna a priori information are used to set the spatial distribution of the equivalent dipoles. The translational and rotational addition theorems are exploited to derive the transmission coefficients of the dipoles. Once the excitation of each dipole is known, the field at any aspect angle and distance from the antenna is rapidly calculated. Computations with EM simulation data of an antenna array illustrate the reliability of the method.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 1 )