Cart (Loading....) | Create Account
Close category search window
 

Online Signature Verification With Support Vector Machines Based on LCSS Kernel Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gruber, C. ; Branch Office, Elektrobit Corp., Munich, Germany ; Gruber, T. ; Krinninger, S. ; Sick, B.

In this paper, a new technique for online signature verification or identification is proposed. The technique integrates a longest common subsequences (LCSS) detection algorithm which measures the similarity of signature time series into a kernel function for support vector machines (SVM). LCSS offers the possibility to consider the local variability of signals such as the time series of pen-tip coordinates on a graphic tablet, forces on a pen, or inclination angles of a pen measured during a signing process. Consequently, the similarity of two signature time series can be determined in a more reliable way than with other measures. A proprietary database with signatures of 153 test persons and the SVC 2004 benchmark database are used to show the properties of the new SVM-LCSS. We investigate its parameterization and compare it to SVM with other kernel functions such as dynamic time warping (DTW). Our experiments show that SVM with the LCSS kernel authenticate persons very reliably and with a performance which is significantly better than that of the best comparing technique, SVM with DTW kernel.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:40 ,  Issue: 4 )
Biometrics Compendium, IEEE

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.