Cart (Loading....) | Create Account
Close category search window
 

Monolithically Integrated Multiport RF MEMS Switch Matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fomani, A.A. ; Electr. & Comput. Eng. Dept., Univ. of Waterloo, Waterloo, ON, Canada ; Mansour, R.R.

The design methodology and performance of a miniature-size monolithically integrated RF microelectro-mechanical systems switch matrix is reported. The switch matrix has the form a of cross-bar configuration that can be easily expanded to realize a large size switch matrix. Three single-pole single-throw RF switches coupled to coplanar waveguide transmission lines are employed to construct the unit cell with dimensions of only 320 ?? 320 ??m2. The compact design of the proposed cell permits the high frequency operation of large switching networks. A six-mask fabrication process has been developed to construct the entire structure on a single side of the wafer. The impact of bias line resistance on the RF performance and the switching speed of the devices were studied. An excellent RF performance is achieved for a fabricated 4??4 switch matrix using high-resistive phosphorous-doped hydrogenated amorphous silicon semiconductor as the material of choice for the biasing lines. Over a frequency range from DC to 40 GHz, the worstcase measured results obtained for the insertion loss, return loss, and isolation are -1.8, -17, and 26 dB, respectively. A wide-band operation is predicted for an 8 ?? 8 switch matrix version constructed from 64 switching units.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 12 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.