Cart (Loading....) | Create Account
Close category search window

Sonar Measurements in Ship Wakes Simultaneous With TerraSAR-X Overpasses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Soloviev, A. ; Oceanogr. Center, Nova Southeastern Univ., Dania Beach, FL, USA ; Gilman, M. ; Young, K. ; Brusch, S.
more authors

A pilot experiment was conducted in the period from April to June 2008 in the Straits of Florida near Port Everglades, Florida, in order to study the dynamics of far wakes of ships. In this experiment, a small boat with downward-looking sonar made ??snakelike?? sections through wakes of ships of opportunity during the TerraSAR-X overpasses. The ship and its parameters (length, speed, course, etc.) were identified utilizing an automated identification system. The sonar responded to the clouds of microbubbles generated in the ship wake by the propulsion system and ship-hull turbulence. The ship wakes were traced in the sonar signal typically from 10 to 30 min after the ship's passage. A preliminary analysis of the measurements suggests that the visibility of the centerline ship wake in synthetic aperture radar (SAR) images is correlated with the presence of microbubbles in the wake. This supports the hypothesis that natural surfactants scavenged and brought to the surface by rising bubbles play an important role in the wake visibility in SAR. The influence of the wind-wave field on the ship wake, as well as the effect of screening of the wind-wave field by the ship's hull, adds another level of complexity to wake patterns observed in SAR images.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.