Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Flat Dry Elastomer Adhesives as Attachment Materials for Climbing Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Unver, Ozgur ; Dept. of Mech. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Sitti, M.

In this paper, flat elastomers are proposed as an attachment material for climbing robots on less than a few micrometer-scale rough surfaces due to their energy-efficient, quiet, and residue-free characteristics. The proper elastomer is chosen by the use of the current adhesion, friction, and peeling elastomer-contact-mechanics models. Then, adhesion and friction properties of the chosen dry flat-elastomer thick films (Vytaflex-10) are characterized on acrylic and smooth and rough glass surfaces for variations in preloads, speeds, contact times, and elastomer thicknesses. A climbing robot with four-bar-based legged-body kinematics is designed and fabricated as simple and lightweight as possible to demonstrate the feasibility of the elastomers as attachment materials on relatively smooth surfaces. The robot utilizes a passive alignment system to make the footpads parallel to the surface on light contact, a peeling mechanism to minimize the detachment vibration, and a passive tail to minimize the pitch-back moment. Experimental results showed that the robot can climb stably on vertical, smooth surfaces in any direction and can walk inverted for a limited amount of time.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 1 )