By Topic

Adaptive probabilistic tracking with reliable particle selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Wang ; Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People¿s Republic of China). ; H. Qiao

A novel, effective probabilistic tracking method is proposed to adaptively capture the varying target appearance in a complex environment. Different from the traditional particle filter algorithms, the proposed method estimates the weight of each particle not only through similarity measurement between the target model and each hypothetical observation, but also through dissimilarity measurement between the background model and each hypothetical observation. The reliable particles with high weights are then selected to estimate the target state, and the target model is evolved over time with a novel model update strategy. Comparison experimental results demonstrate the robust performance of the proposed algorithm under challenging conditions.

Published in:

Electronics Letters  (Volume:45 ,  Issue: 23 )