By Topic

The GPS equations and the Problem of Apollonius

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hoshen, J. ; Lucent Technol. Bell Lab., Naperville, IL, USA

By relating the Global Positioning System (GPS) problem of location to the ancient Problem of Apollonius, this work presents a closed solution to the pseudorange positioning problem for two and three dimensions The positioning problem, given by a set of nonlinear equations, has been reduced to the solution of a quadratic equation. The resulting expressions yield either two or one physically meaningful solutions for both the two- and three-dimensional problems. Expressions for the boundary curves and surfaces that separate the one-solution domain from the two-solution domains are also given. Asymptotic lines and planes for the boundary curves and surfaces have also been derived.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:32 ,  Issue: 3 )