By Topic

Track-to-track fusion with dissimilar sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. K. Saha ; Mitre Corp., MA, USA

An analysis is described of a kinematic state vector fusion algorithm when tracks are obtained from dissimilar sensors. For the sake of simplicity, it is assumed that two dissimilar sensors are equipped with nonidentical two-dimensional optimal linear Kalman filters. It is shown that the performance of such a track-to-track fusion algorithm can be improved if the cross-correlation matrix between candidate tracks is positive. This cross-correlation is introduced by noise associated with target maneuver that is common to the tracking filters in both sensors and is often neglected. An expression for the steady state cross-correlation matrix in closed form is derived and conditions for positivity of the cross-correlation matrix are obtained. The effect of positivity on performance of kinematic track-to-track fusion is also discussed.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:32 ,  Issue: 3 )