Cart (Loading....) | Create Account
Close category search window

Computing programs containing band linear recurrences on vector supercomputers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haigeng Wang ; Dept. of Inf. & Comput. Sci., California Univ., Irvine, CA, USA ; Nicolau, A. ; Keung, S. ; Siu, K.-Y.

Many large-scale scientific and engineering computations, e.g., some of the Grand Challenge problems, spend a major portion of execution time in their core loops computing band linear recurrences (BLRs). Conventional compiler parallelization techniques cannot generate scalable parallel code for this type of computation because they respect loop-carried dependences (LCDs) in programs, and there is a limited amount of parallelism in a BLR with respect to LCDs. For many applications, using library routines to replace the core BLR requires the separation of BLR from its dependent computation, which usually incurs significant overhead. In this paper, we present a new scalable algorithm called the Regular Schedule, for parallel evaluation of BLRs. We describe our implementation of the Regular Schedule and discuss how to obtain maximum memory throughput in implementing the schedule on vector supercomputers. We also illustrate our approach, based on our Regular Schedule, to parallelizing programs containing BLR and other kinds of code. Significant improvements in CPU performance for a range of programs containing BLR implemented using the Regular Schedule in C over the same programs implemented using highly optimized coded-in-assembly BLAS routines [11] are demonstrated on Convex C240. Our approach can be used both at the user level in parallel programming code containing BLRs, and in compiler parallelization of such programs combined with recurrence recognition techniques for vector supercomputers

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 8 )

Date of Publication:

Aug 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.