By Topic

Efficient logic-level timing analysis using constraint-guided critical path search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chanhee Oh ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Mercer, M.R.

As the operating speed of digital circuits dramatically increases with the advance of VLSI technology, it is becoming more critical to ensure that the circuits are free from timing-related design errors. In a traditional static timing approach nonfunctional paths cannot be distinguished from functional ones since the functionality of a circuit is ignored. This often results in overestimation of circuit delay and can degrade the circuit performance. In today's design methodology where the use of automated logic synthesis and module-based design are popular, circuits with a very large number of nonfunctional (false) paths are common. This paper describes an efficient logic-level timing analysis approach that can provide an accurate delay estimate of a digital circuit which may have many long false paths. By using logic incompatibilities in a circuit as constraints for critical path search, the algorithm determines the longest sensitizable path without explicit path enumeration. Since the number of false paths that can be implicitly eliminated is potentially exponential to the number of path constraints, performance improvement is significant.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:4 ,  Issue: 3 )