By Topic

On the Linear Codebook-Level Duality Between Slepian–Wolf Coding and Channel Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jun Chen ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada ; Da-ke He ; Ashish Jagmohan ; Luis A. Lastras-Montano
more authors

In this paper, it is shown that each Slepian-Wolf coding problem is related to a dual channel coding problem in the sense that the sphere packing exponents, random coding exponents, and correct decoding exponents in these two problems are mirror-symmetrical to each other. This mirror symmetry is interpreted as a manifestation of the linear codebook-level duality between Slepian-Wolf coding and channel coding. Furthermore, this duality, in conjunction with a systematic analysis of the expurgated exponents, reveals that nonlinear Slepian-Wolf codes can strictly outperform linear Slepian-Wolf codes in terms of rate-error tradeoff at high rates. The linear codebook-level duality is also established for general sources and channels.

Published in:

IEEE Transactions on Information Theory  (Volume:55 ,  Issue: 12 )