By Topic

Joint Source Channel Coding Via Statistical Mechanics: Thermal Equilibrium Between the Source and the Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Merhav, N. ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel

We examine the classical joint source-channel coding problem from the viewpoint of statistical physics and demonstrate that in the random coding regime, the posterior probability distribution of the source given the channel output is dominated by source sequences, which exhibit a behavior that is highly parallel to that of thermal equilibrium between two systems of particles that exchange energy, where one system corresponds to the source and the other corresponds to the channel. The thermodynamical entropies of the dual physical problem are analogous to conditional and unconditional Shannon entropies of the source, and so, their balance in thermal equilibrium yields a simple formula for the mutual information between the source and the channel output, that is induced by the typical code in an ensemble of joint source-channel codes under certain conditions. This formula, as well as the statistical-mechanical perspective that leads to it, form the main contribution of this paper. We also demonstrate how our results can be used in applications, like the wiretap channel, and how can it be extended to multiuser scenarios, like that of the multiple access channel.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 12 )