By Topic

Training of Process Neural Networks Based on Improved Quantum Genetic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maojun Cao ; Sch. of Comput. & Inf. Technol., Daqing Pet. Inst., Daqing, China ; Fuhua Shang

For training of process neural networks based on the orthogonal basis expansion, it is difficult to converge for BP algorithm as more parameters. Aiming at the issue, this paper proposes a solution based on quantum genetic algorithm with double chains. Firstly, the number of genes is determined by the number of weight parameters, quantum chromosomes are constructed by qubits, and the current optimal chromosome is obtained with the help of colony assessment. Secondly, taking each qubit in this optimal chromosome as the goal, individuals are updated by quantum rotation gate, and mutated by quantum non-gate to increase the diversity of population. In this method, each chromosome carrying two chains of genes, therefore it can extend ergodicity for solution space and accelerate optimization process. Taking the pattern classification of two groups of two-dimensional trigonometric functions as an example, the simulation results show that the method not only has fast convergence, but also good optimization ability.

Published in:

Software Engineering, 2009. WCSE '09. WRI World Congress on  (Volume:2 )

Date of Conference:

19-21 May 2009