Cart (Loading....) | Create Account
Close category search window

Combined MRI-PET scanner: a Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raylman, R.R. ; Dept. of Internal Med., Michigan Univ., Ann Arbor, MI, USA ; Hammer, Bruce E. ; Christensen, N.L.

Positron emission tomography (PET) relies upon the detection of photons resulting from the annihilation of positrons emitted by a radiopharmaceutical. The combination of images obtained with PET and magnetic resonance imaging (MRI) have begun to greatly enhance the study of many physiological processes. A combined MRI-PET scanner could alleviate much of the spatial and temporal coregistration difficulties currently encountered in utilizing images from these complementary imaging modalities. In addition, the resolution of the PET scanner could be improved by the effects of the magnetic field. In this computer study, the utilization of a strong static homogeneous magnetic field to increase PET resolution by reducing the effects of positron range and photon noncollinearity was investigated, The results reveal that significant enhancement of resolution can be attained, For example, an approximately 27% increase in resolution is predicted for a PET scanner incorporating a 10-Tesla magnetic field. Most of this gain in resolution is due to magnetic confinement of the emitted positrons. Although the magnetic field does mix some positronium states resulting in slightly less photon noncollinearity, this reduction does not significantly affect resolution. Photon noncollinearity remains as the fundamental limiting factor of large PET scanner resolution

Published in:

Nuclear Science, IEEE Transactions on  (Volume:43 ,  Issue: 4 )

Date of Publication:

Aug 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.