By Topic

A fuzzy Hopfield neural network for medical image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jzau-Sheng Lin ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Kuo-Sheng Cheng ; Chi-Wu Mao

In this paper, an unsupervised parallel segmentation approach using a fuzzy Hopfield neural network (FHNN) is proposed. The main purpose is to embed fuzzy clustering into neural networks so that on-line learning and parallel implementation for medical image segmentation are feasible. The idea is to cast a clustering problem as a minimization problem where the criteria for the optimum segmentation is chosen as the minimization of the Euclidean distance between samples to class centers. In order to generate feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need of finding weighting factors in the energy function, which is formulated and based on a basic concept commonly used in pattern classification, called the “within-class scatter matrix” principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The fuzzy Hopfield neural network based on the within-class scatter matrix shows the promising results in comparison with the hard c-means method

Published in:

IEEE Transactions on Nuclear Science  (Volume:43 ,  Issue: 4 )