By Topic

Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Christelle Monat ; Centre for Ultrahigh-Bandwidth Devices for Optical Systems (CUDOS), Institute for Photonics and Optical Sciences (IPOS), School of Physics, University of Sydney, Sydney, Australia ; Bill Corcoran ; Dominik Pudo ; Majid Ebnali-Heidari
more authors

We present a summary of our recent experiments showing how various nonlinear phenomena are enhanced due to slow light in silicon photonic crystal waveguides. These nonlinear processes include self-phase modulation (SPM), two-photon absorption (TPA), free-carrier related effects, and third-harmonic generation, the last effect being associated with the emission of green visible light, an unexpected phenomenon in silicon. These demonstrations exploit photonic crystal waveguides engineered to support slow modes with a range of group velocities as low as c/50 and, more crucially, with significantly reduced dispersion. We discuss the potential of slow light in photonic crystals for realizing compact nonlinear devices operating at low powers. In particular, we consider the application of SPM to all-optical regeneration, and experimentally investigate an original approach, where enhanced TPA and free-carrier absorption are used for partial regeneration of a high-bit rate data stream (10 Gb/s).

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:16 ,  Issue: 1 )