By Topic

The May 12, 2008, (Mw 7.9) Sichuan Earthquake (China): Multiframe ALOS-PALSAR DInSAR Analysis of Coseismic Deformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Marco Chini ; Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy ; Simone Atzori ; Elisa Trasatti ; Christian Bignami
more authors

A destructive (Mw 7.9) earthquake affected the Sichuan province (China) on May 12, 2008. The seismic event ruptured approximately 270 km of the Yingxiu-Beichuan fault and about 70 km of the Guanxian-Anxian fault. Surface effects were suffered over a wide epicentral area (about 300 km E-W and 250 km N-S). We apply the differential synthetic aperture radar interferometry (DInSAR) technique to detect and measure the surface displacement field, using a set of ALOS-PALSAR L-band SAR images. We combine an unprecedented high number of data (25 frames from six adjacent tracks) to encompass the entire area which has coseismically displaced. The resulting mosaic of differential interferograms covers an overall area of about 340 km E-W and 240 km N-S. We investigate the source of the Sichuan earthquake by modeling the DInSAR data. The geometry and position of the fault parameters are inferred by a nonlinear inversion, followed by a linear inversion to retrieve the relative slip distribution. Our results show two different source mechanisms for the 145-long Yingxiu-Beichuan fault and for the 105-long Beichuan-Qingchuan fault. Both faults are characterized by slip concentrations of up to 8 m.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:7 ,  Issue: 2 )