Cart (Loading....) | Create Account
Close category search window
 

Doubly Selective Channel Estimation Using Exponential Basis Models and Subblock Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tugnait, J.K. ; Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA ; Shuangchi He ; Hyosung Kim

Three versions of a novel adaptive channel estimation approach, exploiting the over-sampled complex exponential basis expansion model (CE-BEM), is presented for doubly selective channels, where we track the BEM coefficients rather than the channel tap gains. Since the time-varying nature of the channel is well captured in the CE-BEM by the known exponential basis functions, the time variations of the (unknown) BEM coefficients are likely much slower than those of the channel, and thus more convenient to track. We propose a ??subblockwise?? tracking scheme for the BEM coefficients using time-multiplexed (TM) periodically transmitted training symbols. Three adaptive algorithms, including a Kalman filtering scheme based on an assumed autoregressive (AR) model of the BEM coefficients, and two recursive least-squares (RLS) schemes not requiring any model for the BEM coefficients, are investigated for BEM coefficient tracking. Simulation examples illustrate the superior performance of our approach over several existing doubly selective channel estimators.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.