By Topic

Improved Model-Based Parameter Estimation Approach for Accelerated Periodic Method of Moments Solutions With Application to the Analysis of Convoluted Frequency Selected Surfaces and Metamaterials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiande Wang ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Douglas H. Werner

An improved ??smart?? interpolation approach known as model-based parameter estimation (MBPE) is applied to the wide-band interpolation of periodic method of moments (PMM) impedance matrices for normal and oblique incidence cases. Prior to interpolation, easy to calculate but hard to interpolate, phase terms are removed from the impedance matrices. An efficient spectral-domain PMM formulation is introduced for the accelerated analysis of frequency selective surface (FSS) problems with a large number of unknowns, employing a one dimensional O(N log N) FFT-based method to speed up the computation of matrix-vector products within the bi-conjugate gradient (BCG) iterative solver, which is made possible by the asymmetric multilevel block-Toeplitz structure of the impedance-matrix. The MBPE interpolation algorithm provides a faster matrix fill time than the brute force method and is comparable or even faster than the 2-D FFT-based method for a large number of unknowns. It also has the advantage that it can be applied to non-uniform gridding cases. The accuracy and efficiency of the proposed techniques for large FSS problems are demonstrated by several design examples for both the normal and oblique incidence cases. We also apply this efficient analysis tool to the design of multiband single-layer FSS filters and artificial magnetic conductors (AMC) comprised of a 2-D periodic arrangement of convoluted metallic strips in the shape of a Hilbert curve. The multiband properties of the Hilbert curve FSS filters are studied for different iteration orders (i.e., different degrees of space-filling).

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:58 ,  Issue: 1 )