By Topic

Estimating Workforce-Related Economic Impact of a Pandemic on the Commonwealth of Virginia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Orsi, M.J. ; Center for Risk Manage. of Eng. Syst., Univ. of Virginia, Charlottesville, VA, USA ; Santos, J.R.

A pandemic outbreak is one of the major planning scenarios considered by emergency-preparedness policymakers. The consequences of a pandemic can significantly affect and disrupt a large spectrum of workforce sectors in today's society. This paper, motivated by the impact of a pandemic, extends the formulation of the dynamic inoperability input-output model (DIIM) to account for economic perturbations resulting from such an event, which creates a time-varying and probabilistic inoperability to the workforce. A pandemic is a unique disaster, because the majority of its direct impacts are workforce related and it does not create significant direct impact to infrastructure. In light of this factor, this paper first develops a method of translating unavailable workforce into a measure of economic-sector inoperability. While previous formulations of the DIIM only allowed for the specification of an initial perturbation, this paper incorporates the fact that a pandemic can cause direct effects to the workforce over the recovery period. Given the uncertainty associated with the impact of a pandemic, this paper develops a simulation framework to account for the possible variations in realizations of the pandemic. The enhancements to the DIIM formulation are incorporated into a MatLab program and then applied to a case study to simulate a pandemic scenario in the Commonwealth of Virginia.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:40 ,  Issue: 2 )