Cart (Loading....) | Create Account
Close category search window

A Design Methodology for Miniaturized Power Dividers Using Periodically Loaded Slow Wave Structure With Dual-Band Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rawat, K. ; Dept. of Electr. & Comput. Eng., Univ. of Calgary, Calgary, AB, Canada ; Ghannouchi, F.M.

This paper proposes an analytically-based approach for the design of a miniaturized single-band and dual-band two-way Wilkinson power divider. This miniaturization is achieved by realizing the power divider's impedance transformers using slow wave structures. These slow wave structures are designed by periodically loading transmission lines with capacitances, which reduces the phase velocity of the propagating waves and hence engender higher electric lengths using smaller physical lengths. The dispersive analysis of the slow wave structure used is included in the design approach to ensure a smooth nondispersive transmission line operation in the case of dual-band applications. The design methodology is validated with the design of a single-band, reduced size, two-way Wilkinson power divider at 850 and 620 MHz. An approximate length reduction of 25%-35% is achieved with this technique. For dual-band applications, this paper describes the design of a reduced size, two-way Wilkinson power divider for dual-band global system for mobile communications and code division multiple access applications at 850 and 1960 MHz, respectively. An overall reduction factor of 28%, in terms of chip area occupied by the circuit, is achieved. The electromagnetic simulation and experimental results validate the design approach. The circuit is realized with microstrip technology, which can be easily fabricated using conventional printed circuit processes.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 12 )

Date of Publication:

Dec. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.