By Topic

A Unified Architecture for the Accurate and High-Throughput Implementation of Six Key Elementary Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper presents a unified architecture for the compact implementation of several key elementary functions, including reciprocal, square root, and logarithm, in single-precision floating-point arithmetic. The proposed high-throughput design is based on uniform domain segmentation and curve fitting techniques. Numerically accurate least-squares regression is utilized to calculate the polynomial coefficients. The architecture is optimized by analyzing the trade-off between the size of the required memory and the precision of intermediate variables to achieve the minimum 23-bit accuracy required for single-precision floating-point representation. The efficiency of the proposed unified data path is demonstrated on a common field-programmable gate array.

Published in:

IEEE Transactions on Computers  (Volume:59 ,  Issue: 4 )