By Topic

Study on fast model predictive controllers for large urban traffic networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shu Lin ; Dept. of Autom., Shanghai Jiao Tong Univ., Shanghai, China ; De Schutter, B. ; Yugeng Xi ; Hellendoorn, H.

Traffic control is both an efficient and effective way to alleviate the traffic congestion in urban areas. Model predictive control (MPC) has advantages in controlling and coordinating urban traffic networks. But, the real-time computational complexity of MPC increases exponentially, when the network scale and the predictive time horizon grow. To improve the real-time feasibility of MPC, a simplified macroscopic urban traffic model is developed. Two MPC controllers are built based on the simplified model and a more detailed model. Simulation results of the two controllers show that the online optimization time is reduced dramatically by applying the simplified model, only losing a limited amount of control effectiveness. Additional techniques, like applying a control time horizon and an aggregation scheme, are implemented to reduce the computational complexity further. Simulation results show positive effects of these techniques.

Published in:

Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on

Date of Conference:

4-7 Oct. 2009