By Topic

A 6-bit, 0.2 V to 0.9 V Highly Digital Flash ADC With Comparator Redundancy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daly, D.C. ; Energic Semicond., Cambridge, MA, USA ; Chandrakasan, A.P.

A 6-bit highly digital flash ADC is implemented in a 0.18 mum CMOS process. The ADC operates in the subthreshold regime down to 200 mV and employs comparator redundancy and reconfigurability to improve linearity. The low-voltage sampling switch employs voltage boosting, stacking and feedback to reduce leakage. Common-mode rejection is implemented digitally via an IIR filter. The minimum FOM of the ADC is 125 fJ/conversion-step at a 0.4 V supply, where it achieves an ENOB of 5.05 at 400 kS/s. The clocked comparators' switching thresholds are adjusted through a combination of device sizing and stacking. A quadratic relationship between the amount of device stacking and the strength of an input network in the subthreshold regime is derived, demonstrating an advantage of stacking over device width scaling to adjust comparator thresholds.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 11 )