Cart (Loading....) | Create Account
Close category search window
 

Automatic Color Based Reassembly of Fragmented Images and Paintings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsamoura, E. ; Aristotle Univ. of Thessaloniki, Thessaloniki, Greece ; Pitas, I.

The problem of reassembling image fragments arises in many scientific fields, such as forensics and archaeology. In the field of archaeology, the pictorial excavation findings are almost always in the form of painting fragments. The manual execution of this task is very difficult, as it requires great amount of time, skill and effort. Thus, the automation of such a work is very important and can lead to faster, more efficient, painting reassembly and to a significant reduction in the human effort involved. In this paper, an integrated method for automatic color based 2-D image fragment reassembly is presented. The proposed 2-D reassembly technique is divided into four steps. Initially, the image fragments which are probably spatially adjacent, are identified utilizing techniques employed in content based image retrieval systems. The second operation is to identify the matching contour segments for every retained couple of image fragments, via a dynamic programming technique. The next step is to identify the optimal transformation in order to align the matching contour segments. Many registration techniques have been evaluated to this end. Finally, the overall image is reassembled from its properly aligned fragments. This is achieved via a novel algorithm, which exploits the alignment angles found during the previous step. In each stage, the most robust algorithms having the best performance are investigated and their results are fed to the next step. We have experimented with the proposed method using digitally scanned images of actual torn pieces of paper image prints and we produced very satisfactory reassembly results.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.