Cart (Loading....) | Create Account
Close category search window

Spoken Proper Name Retrieval for Limited Resource Languages Using Multilingual Hybrid Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akbacak, M. ; Center for Robust Speech Syst. (CRSS), Univ. of Texas at Dallas, Richardson, TX, USA ; Hansen, J.H.L.

Research in multilingual speech recognition has shown that current speech recognition technology generalizes across different languages, and that similar modeling assumptions hold, provided that linguistic knowledge (e.g., phone inventory, pronunciation dictionary, etc.) and transcribed speech data are available for the target language. Linguists make a very conservative estimate that 4000 languages are spoken today in the world, and in many of these languages, very limited linguistic knowledge and speech data/resources are available. Rapid transition to a new target language becomes a practical concern within the concept of tiered resources (e.g., different amounts of acoustically matched/mismatched data). In this paper, we present our research efforts towards multilingual spoken information retrieval with limitations in acoustic training data. We propose different retrieval algorithms to leverage existing resources from resource-rich languages as well as the target language. Proposed algorithms employ confusion-embedded hybrid pronunciation networks, and lattice-based phonetic search within a proper name retrieval task. We use Latin-American Spanish as the target language by intentionally limiting available resources for this language. After searching for queries consisting of Spanish proper names in Spanish Broadcast News data, we demonstrate that retrieval performance degradations (due to data sparseness during automatic speech recognition (ASR) deployment in the target language) are compensated by employing English acoustic models. It is shown that the proposed algorithms for developing rapid transition of rich languages to underrepresented languages are able to achieve comparable retrieval performance using 25% of the available training data.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:18 ,  Issue: 6 )

Date of Publication:

Aug. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.