Cart (Loading....) | Create Account
Close category search window
 

F k Filter Designs to Suppress Direct Waves for Bistatic Ground Penetrating Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hayashi, N. ; Grad. Sch. of Environ. Studies, Tohoku Univ., Sendai, Japan ; Sato, M.

Two design methods of a filter in a frequency-spatial frequency (f-k) domain have been developed for bistatic ground penetrating radar. The proposed methods suppress the direct wave, which causes significant artifacts in radar images, and are evaluated by laboratory measurements. Because the geometric positions of a transmitting antenna and a receiving antenna are not fixed, the suppression of a direct wave is an important issue. Then, we propose an f-k filtering approach for the solution, and present two methods to design the f-k filter. Both methods use a difference of an apparent horizontal velocity between a direct wave and a reflection from a target, and work automatically from position information of a transmitting antenna and a receiving antenna. One method is to mask an f-k spectrum in a region where a spectrum of the direct wave is distributed. The region is defined from the maximum and the minimum apparent horizontal velocity of the direct wave, which are calculated from the location of the transmitting antenna and the scanning area of the receiver. As for the other method, the most essential point is applying a time shift to eliminate a difference of an arrival time of a direct wave, where the time shift is calculated beforehand from the location of the transmitting antenna and the receiving antenna. Then, an apparent horizontal velocity of the direct wave becomes infinitely large due to the time shift. Thus, the f-k spectrum of the direct wave concentrates around a frequency axis because its slope is infinitely large. Then, a filter to reject the dc component in the spatial frequency direction is applied. Both methods are applied to an experimental data set which is acquired by a bistatic radar measurement to detect a buried landmine model with a depth of 10 cm. In addition, it is confirmed that they can suppress the undesired fluctuation of the images nearly one-tenth and help the rel- - iable detection of a buried object.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.