By Topic

An Adaptive Monte Carlo Approach to Phase-Based Multimodal Image Registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wong, A. ; Syst. Design Eng., Univ. of Waterloo, Waterloo, ON, Canada

In this paper, a novel multiresolution algorithm for registering multimodal images, using an adaptive Monte Carlo scheme is presented. At each iteration, random solution candidates are generated from a multidimensional solution space of possible geometric transformations, using an adaptive sampling approach. The generated solution candidates are evaluated based on the Pearson type-VII error between the phase moments of the images to determine the solution candidate with the lowest error residual. The multidimensional sampling distribution is refined with each iteration to produce increasingly more plausible solution candidates for the optimal alignment between the images. The proposed algorithm is efficient, robust to local optima, and does not require manual initialization or prior information about the images. Experimental results based on various real-world medical images show that the proposed method is capable of achieving higher registration accuracy than existing multimodal registration algorithms for situations, where little to no overlapping regions exist.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:14 ,  Issue: 1 )