By Topic

A Novel Transmission-Line Deembedding Technique for RF Device Characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hsiu-Ying Cho ; Taiwan Semicond. Manuf. Co., Hsinchu, Taiwan ; Jiun-Kai Huang ; Chin-Wei Kuo ; Liu, S.
more authors

A novel transmission-line deembedding technique is presented in this paper. With this technique, the left- and right-side ground-signal-ground probe pads can be extracted directly using two transmission-line test structures of length L and 2L. An additional through structure is designed using via-stack deembedding, which is unique among current deembedding methods. The advantages of the proposed method include the following: 1) smaller silicon area; 2) discontinuity between the pad and interconnect; 3) substrate coupling and contact effects; and 4) employment of via-stack deembedding. The proposed novel methodology is a great breakthrough in the area of ultrahigh-frequency deembedding and should enable more accurate RF models to be developed. In the proposed methodology, intrinsic slow-wave CPW transmission-line structures are placed on the interlevel metallization layers, as they are the most appropriate RF device for cascade-based deembedding method involving the via-stack deembedding technique. Experimental results have demonstrated that attenuation loss and wavelength can be optimized by changing the metal density and the position of the metal layer on the floating shields. Both measurement and electromagnetic-wave simulations were performed up to 50 GHz. With a shortened wavelength, a reduction in silicon area of more than 66% can be achieved by using optimized slot-type floating shields.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 12 )