By Topic

Omnipresent Ethernet—Technology Choices for Future End-to-End Networking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gumaste, A. ; Dept. of CSE, Indian Inst. of Technol., Bombay, India ; Mehta, S. ; Arora, I. ; Goyal, P.
more authors

We propose an all-Ethernet end-to-end communication framework for the access, metro and core networks called Omnipresent Ethernet (or OEthernet). The proposed hierarchy is based on two inherent assumptions: (1) present manner of interconnection in carrier networks from a graph theory perspective and (2) recent advances in Carrier Ethernet. The OEthernet approach makes good use of the advances of Ethernet from the LAN to the MAN and now to carrier networks, while inducing pragmatic traffic requirements for end-to-end communication. The OEthernet concept is a new end-to-end communication paradigm focused in particular to meet emerging service needs taking business requirements into consideration. The proposed solution is based on concepts of binary routing, source routing, logical topology abstraction and tagged connection oriented flow provisioning leading to a new communication hierarchy that facilitates end-to-end communication. This end-to-end solution uses Ethernet and its associated advances as an enabler technology. We define the advantages, the technological choices and the traffic assumptions for this end-to-end Ethernetworking hierarchy. Following which we postulate simple algorithms for converting an arbitrary network to one which facilitates source routing and binary routing-two concepts that are instructive in our solution. Subsequent to the conceptual explanation the engineering aspects of the implementation are detailed. In particular end-to-end communication using our solution, in the presence and absence of IP as a network layer is showcased. The solution is analyzed from a utilization and delay perspective. An optical implementation of the end-to-end OEthernet solution for enterprise networks is also proposed. Included is a new node architecture leading to a class of optical networking called O-BiS or Optical Bit-Switching. Comparison with existing approaches as well as positioning with respect to all-IP networks is then showcased. Triple Play servic- - es are simulated over our networking solution to validate our results.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 8 )